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LAAS-CNRS

Toulouse, France
{bayoudh, louise}@laas.fr

Xavier Olive
Alcatel Alenia Space

France
Xavier.Olive@space.alcatel.fr

Abstract
On line model based reconfiguration is generally
used to improve the ability of a system to toler-
ate faults. Recovery after fault occurrence relies
on allowing the system to proceed with its mission
from a new known nominal state. In this paper, we
consider on-line reconfiguration from a novel point
of view, having in mind to use reconfiguration ac-
tions to desambiguate the tracked estimated system
state, i.e. to produce a more precise diagnosis. The
choice of the best suited reconfiguration action(s)
must hence be guided by the diagnosability prop-
erties of the system. However, diagnosability con-
ditions known for continuous systems (CS) on one
hand and for discrete event systems (DES) on the
other hand cannot be applied directly because of
the hybrid nature of the systems that we consider.
Our work proposes a framework for analyzing the
diagnosability of a hybrid system which stands on
recent results establishing the formal equivalence
of diagnosability definitions for DES and CS. The
approach relies on merging the fault signatures ex-
hibited at the continuous level into the Mode Au-
tomaton that represents the discrete dynamics of
the system, so that DES diagnosability analysis can
be performed on the resulting Behavior Automaton
and the corresponding diagnoser. When the state
of the system is ambiguous, an analysis of the di-
agnoser should allows to point at reconfiguration
actions that safely move the system into a mode re-
ducing ambiguity.

1 Introduction
Embedded systems found in nowadays cars, aircrafts and
space vehicles are characterized by a mix of hardware and
software components and limited instrumentation. They
hence undergo complex hybrid dynamics that can only be
partially observed, which makes tricky their on-board moni-
toring and diagnosis. They generally require to use stochastic
and/or uncertain approaches which provide a belief state or in
other words an ambiguous diagnosis [Hofbaur and Williams,
2004] [Benazera et al., 2002] [Williams and Nayak, 1999]. In
many cases, testing the system on line could be an interesting

option to produce a more precise diagnosis. For instance, in
the space domain, specific commands are often applied by the
ground segment for getting more information about the state
of a faulty spacecraft.
This kind of testing, that we call active diagnosis, involves
reconfiguring the system so that new symptoms are exhib-
ited through the existing sensor instrumentation. The choice
of the best suited reconfiguration action (s) must hence be
guided by the diagnosability properties of the system. Diag-
nosability analysis proves to be a requisite for several other
tasks such as instrumentation design, end-of-line testing, etc
and has deserved a lot of attention from the Model Based Di-
agnosis community in the last few years, both for the anal-
ysis of Continuous Systems (CS) and Discrete Events Sys-
tems (DES) [Sampath et al., 1995] [Pencolé, 2004] [Travé-
Massuyès et al., 2004].
However, diagnosability conditions known for continuous
systems (CS) on one hand, and for discrete event systems
(DES) on the other hand, cannot be applied directly when the
system has hybrid dynamics. We rely on very recent results
establishing the formal equivalence of diagnosability defini-
tions for DES and CS [Cordier et al., 2006] and propose to
abstract the faulty continuous dynamics of a hybrid automa-
ton to produce a enriched discrete automaton that accounts
for fault models. Fault models are obtained from fault signa-
tures exhibited from the continuous dynamics constraints that
are interpreted in terms of events.
DES diagnosability analysis can be performed on the result-
ing Behavior Automaton and the corresponding diagnoser.
When the state of the system is ambiguous, an analysis of
the diagnoser should allow to point at reconfiguration actions
that safely move the system into a mode reducing ambiguity.
The paper is organized as follows. Section 2 introduces the
hybrid modelling framework used for tracking the states of
the system. Section 3 provides an insight into fault signa-
tures as defined for continuous systems and gives the intu-
itions guiding our contribution. Section 4 then introduces the
main DES diagnosability notions. Section 5 presents the pro-
cedure for building the Behavior Automaton from the Mode
Automaton and fault signatures exhibited at the continuous
behavior level. Finally, section 6 illustrates our approach with
a motivational example. Related work, perspectives for future
work and concluding discussion are provided in section 7.



2 Hybrid modeling framework
Embedded systems combine continous dynamics with dis-
crete events (which can be commanded or spontaneous).
Hence, the hybrid formalism is appropriate for modelling
complex dynamic systems. An hybrid system is described by
a hybrid automaton defined as a tuple S = (X, Q, Σ, T, C),
where:
• X is the set of continuous variables, which includes ob-

servable and non observables variables. Those variables
are linked with constraints that vary from one mode to
another.

• Q is the set of discrete variables. Each state qi ∈ Q
represents a functional mode of the system.

• Σ is the set of events. Events correspond to command
value switches, spontaneous mode changes and fault
events.

• Σo ⊆ Σ is the set of observable events. Without loss of
generality we can assume that fault events are unobserv-
able.

• T is the transition function, Q× Σ → Q.
• C is the set of constraints which may be qualitative or

quantitative. Associating a subset of constraints Ci ⊆ C
to functional mode qi allows one to describe the system
behavior evolution in this mode. Quantitative constraints
can be derived from algebraic or differential equations.

• (x0, q0) is the initial condition.
The discrete part of the hybrid automaton, given by M =
(Q, Σ, T, q0), is a discrete automaton that describes the dis-
crete dynamics of the system, i.e. the possible evolutions
between operating modes in Q. We refer to this automaton
as the Mode Automaton. Modes include nominal and fault
modes as well as an unknown mode which stands for all the
non anticipated fault situations. The unknown mode has no
specified underlying behavior and hence no associated con-
straints.

3 Fault Signatures
Following the parity space approach, the constraints in each
mode qi can be brought back to a set of analytical redundancy
relations (SARRqi

) by eliminating non observable variables
[Cordier et al., 2004]. An ARR can be expressed as r = 0,
where r is called the residual of the ARR. The ARRs are con-
straints that only contain observable variables. They can be
determined off-line and then be evaluated on-line with the in-
coming observations, allowing one to check the consistency
of the observed against the predicted system’s behavior. They
are satisfied if the observed behavior satisfies the model con-
straints, in which case the associated residuals are zero. In
the opposite case, all or some of the residuals are non zero.
The set of residuals hence results in a boolean fault indicator
tuple. The expected boolean value pattern for a given fault
provides the fault signature. In our hybrid framework, the set
of ARRs linked with each functional system mode is gener-
ally different, although some ARRs may be shared. A fault
hence manifests by the fact that a subset of residuals switches

to a non zero value, whereas other residuals may switch from
an undetermined value to zero.
Definition 1 Given a set [r1, ..., rn] of n residuals and a set
F = [F1, F2, ..., Fm] of m faults, the signature of a fault Fj

is given by the binary vector FSi = [s1j , ..., snj ]
T , sij = 1

if some components affected by Fj are involved in ARRi,
sij = 0 otherwise.

Residuals and fault signatures provide an abstracted infor-
mation about the continuous dynamics of the system which
is sufficient for characterizing the system’s nominal or faulty
state. When a fault occurs, fault signatures can be interpreted
in terms of events referring to the residuals switching values.
Our goal is to take advantage of this event driven information
to enrich the system’s mode automaton, abstracting the con-
tinuous dynamics of the hybrid automaton into an extended
discrete automaton that we call the Behavior Automaton. The
diagnosability of the hybrid system can thus be analysed from
the Behavior Automaton, by using discrete event systems cri-
teria [Sampath et al., 1995].

4 DES diagnosability Analysis
4.1 Diagnosability definition
Diagnosability is the property of a system and its observables,
i.e. set of all the possible observations, that guarantees that a
set of anticipated fault situations can be assessed and distin-
guished. Diagnosability definitions have been provided inde-
pendently for CS and for DES [Cordier et al., 2006] [Sampath
et al., 1995]. However, recent results have proved that defi-
nitions on both sides are formally equivalent [Cordier et al.,
2006]. We take benefit of this result and propose to interpret
the CS fault signatures that are the key diagnosability concept
in terms of an automaton that can be merged into the discrete
dynamics model. In this way, the diagnosability problem for
the hybrid system is brought back to the diagnosability prob-
lem for an extended DES system. In consequence, this sec-
tion restricts the presentation to the DES diagnosability defi-
nition and analysis through the so-called diagnoser [Sampath
et al., 1995]. A DES is modeled by a finite state machine
M = (Q, Σ, T, q0) where Q is the set of states, Σ is the set of
events, T ⊆ (Q × Σ × Q) the transition function and q0 the
initial state, as already defined in section 2. The event set Σ is
partitioned as Σ = Σuo ∪ Σo, where Σuo is the unobservable
event set and Σo the observable event set. Observable events
are system commands or events generated from the sensors.
In our approach, these later observable events are the resid-
ual value switches. We consider Σf ∪ Σuo as the set of fault
events to be diagnosed. In the DES community, the diagnosis
consists in the deduction of unobservable fault events from
the observable traces generated by the system.
Definition 2 A fault F is diagnosable iff for each trajectory
sF containing the fault event, there exists a finite sequence of
observable events [o1, o2, ..., on] that allows us to diagnose F
with certainty.
Formally, the fault F is diagnosable iff there exists a subset
of observable events OBSF ⊆ Σo, such that, for each trajec-
tory sF containing the fault event, there exists a finite num-
ber n such that, for each continuation t of sF , if the length of



sF t is greater than n, then Proj|Σo
(sF t) = OBSF , where

Proj|Σo
(sF t) is the projection of sF t on the observable set

Σo.

4.2 The diagnoser
We assume that M has no unobservable cycles (i.e cycles con-
taining unobservable events only). The set of fault events ΣF

is partitioned into disjoint sets corresponding to different fail-
ure types, ΣF = ΣF1

∪ ΣF2
∪ ... ∪ ΣFn

and ΣFi
∩ ΣFj

=
∅, for i 6= j. The aim of the diagnosis is to make inferences
about past occurrences of failure types on the basis of the
observed events. In order to solve this problem the system
model is directly converted into the diagnoser.
The diagnoser Diag(M) = (QDiag , ΣDiag , TDiag, q0 Diag)
is a deterministic finite state machine built from the system
model M = (Q, Σ, T, q0) [Sampath et al., 1995].
q0Diag = {(q0, {∅})} is the initial state of the diagnoser.
ΣDiag = Σo is the set of observable events of the system.
QDiag is the set of states of the diagnoser: QDiag ⊆ 2Q×2ΣF

or QDiag ⊆ P(Q×P(ΣF )), where P(E) denotes the power
set of E. The states of the diagnoser provide the set of di-
agnosis candidates as a set of couples whose first element
refers to the state of the original system and the second is
a label providing the set of faults on the path leading to
this state. For example, when the diagnoser is in the state
qDiag = {(q1, { }), (q2, {ΣF1

, ΣF3
})}, it means that the sys-

tem M is in one of the states q1, q2 as developed in table 11.
TDiag is the diagnoser transition function which is built by a
recursive process which consists in computing all the reach-
able states from the diagnoser initial state and by propagating
the diagnosis information. For more details see [Sampath et
al., 1995].

State Diagnosis Comments
q1 {∅} the system my be in the

nominal state q1 (no fault)
q2 {{ΣF1

, ΣF3
}} the system my be in the faulty

state q3 with a
diagnosis
{ΣF1

, ΣF3
}

(ΣFi
means that at least one

fault of type ΣFi
has occurred)

Table 1: The {ΣF1
, ΣF3

} uncertain state of the Diagnoser

Definition 3 Given a diagnoser state qDiag ∈ QDiag , this
state is ΣFi

-uncertain iff ΣFi
does not belong to all the labels

of the state.

Definition 4 The system M is not diagnosable iff the asso-
ciated diagnoser Diag(M) contains an uncertain cycle, i.e.
a cycle in which there is at least one ΣFi

-uncertain state for
some ΣFi

and whose states also define a cycle in the original
system M .

1We do not use the ambiguous label used in [Sampath et al.,
1995], but we explicitly give the set of faulty system modes

5 Building the Behavior Automaton
In the classic FDI approach, a fault manifests itself as antici-
pated in the fault signature, which reduces the detection task
to detecting the violation of a subset of set of ARRs. In this
paper, we propose to model the (nominal and faulty) contin-
uous behavior of the hybrid system based on events referring
to the set of ARRs associated to the different modes. For
each mode of the system (nominal and faulty), we associate
a so- called Local Behavior Automaton constructed from the
knowledge of the residuals that must switch value when tran-
sitioning to this mode: these residuals include a subset of the
residuals associated to the departure modes that switch to non
zero value and the residuals in the current mode that must
switch to zero. Notice that the same procedure is indiffer-
ently applicable for transitions triggered by command events,
fault event or spontaneous events. Local behavior automata
hence evolve with the occurrence of residual value switches
that define a set of events. They should allow us to determine
the unobservable event (fault or spontaneous) that occurred at
the transitioning between modes by the analysis of their ob-
servable trajectories.
The system’s Behavior Automaton is obtained as an exten-
sion of the Mode Automaton by the local behavior automata
for each transition.
Let SARRqi

= {ARRi1, ARRi2, ..., ARRiNARR(qi)} be
the set of ARRs associated to mode qi and Srqi

=
{ri1, ri2, ..., riNARRS(qi)} the associated set of residuals,
where NARR(qi) is the number of ARRs in mode qi. We
denote by Srsystem =

⋃
i Srqi

the set of all residuals for the
system and we denote by D = {0, 1, und} the residuals value
domain, where und stands for the undefined value that is used
to represent the case when the associated ARR is not defined
in one given mode.
Now, let us define the function e, which associates an event
to every residual value switch:

e : Srsystem ×D ×D −→ Σbehav

(rij , l, k) 7−→ elk
ij

The event elk
ij is hence associated to the residual rij switching

from value l to value k.
The Local Behavior Automaton for a given system mode qi

(either nominal or faulty) is defined as M i = (Qi, Σi, T i, qi
0)

where:
• Qi is the set of local behavior automaton states, each

state qi,k ∈ Qi is characterized by an instance of
the global set of residuals Srsystem and the trajecto-
ries exhibit the different possible order for the residuals
switches.

• Σi is the set of events, each event corresponds to one
residual value switch.

As stated before, the system’s Behavior Automaton is ob-
tained as an extension of the Mode Automaton by the local
behavior automata for each mode state. This procedure al-
lows us to generate the system’s Behavior Automaton in a
mode-driven way, avoiding to enumerate all possible states,
see (figure4). Indeed formally, the system’s Behavior Au-
tomaton is the synchronous product of the automata defining



the residual value switches in which all non accessible states
and impossible transitions, defined by the Mode Automaton,
are discarded. The proof of equivalence is not provided in
this paper.

6 Motivational Example
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Figure 1: Circuit

In this section, we take example the electrical circuit,
(figure1), which has two nominal operating modes N1 et N2,
commanded by a switch sw. Without loss of generality, in
this example, we only deal with the faulty modes involving
the component R2, see (figure2). Otherwise, the centralized
model of the whole system, can be obtained by taking into
account the other component misbehaviors. The observable
variables are: the voltage E, E’ and the currents I, I’, I1, I2

and I3.

6.1 The modes automaton

sw ="on"

sw ="off"

f1 2ff 1
f2

fu uf
unknown

N2N1

 short
circuit

opened
 circuit

Figure 2: The modes automaton of the part in system which
tacks into account only the misbehaviors invloving the com-
ponent R2.

6.2 The ARRs set by each mode
We compute the several ARRs of the system in the two
nominal modes and in the fault mode opened circuit.

In the nominal mode N1, (sw = off)

ARR11 : I1obs =
R2

R1 + R2

Iobs (1)

ARR12 : Eobs = R3Iobs + R1I1obs (2)
ARR13 : Eobs = R3Iobs + R2I2obs (3)

In the nominal mode N2, (sw = on)

ARR21 : I1obs =
R2

R1 + R2

Iobs (4)

ARR22 : Eobs = R3(Iobs + I
′

obs) + R1I1obs (5)
ARR23 : Eobs = R3(Iobs + I

′

obs) + R2I2obs (6)
ARR24 : E

′

obs = R4I
′

obs + R3(Iobs + I
′

obs) (7)

In the fault mode opened circuit, (sw = off)

ARRO11 : Eobs = R3Iobs + R1I1obs (8)
ARRO12 : Iobs = I1obs (9)

In the fault mode opened circuit, (sw = on)

ARRO21 : Eobs = R3(I1obs + I
′

obs) + R1I1obs (10)
ARRO22 : E

′

obs = R4I
′

obs + R3(Iobs + I
′

obs) (11)
ARRO23 : Iobs = I1obs (12)

6.3 The Behavior Automaton
In this part, we present the part of the behavior automaton
corresponding to the transitions from nominal modes to the
fault mode opened circuit, see (figure3). Each mode of the
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N2N1
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q11 q21 q22q12
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er23
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f1 f1

e
r21
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e
r21
01er23
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sw = "on"

sw = "off"

e rO22
01 e rO21

01
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Figure 3: The Local Behavior Automaton associated to the
fault mode opened circuit.

behavior automaton is characterized by one instance of the
residual set, this mapping is given in tables (2, 3, 4 and 5).

7 Discussion and conclusions
This paper proposes a framework for analyzing the diagnos-
ability of a hybrid system which stands on recent results
establishing the formal equivalence of diagnosability defi-
nitions for DES and CS. The approach relies on merging



modes [r11, r12, r13] [r21, r22, r23, r24]
q10 [0, 0, 0] [und, und, und, und]
q11 [1, 0, 0] [und, und, und, und]
q12 [0, 0, 1] [und, und, und, und]
q13 [1, 0, 1] [und, und, und, und]
q14 [1, 0, 1] [und, und, und, und]

Table 2: a-1, Mapping between the modes of the Local be-
havior automaton and the instances of the residuals.

modes [rO11, rO12] [rO21, rO22, rO23]
q10 [und, und] [und, und, und, und]
q11 [und, und] [und, und, und, und]
q12 [und, und] [und, und, und, und]
q13 [und, und] [und, und, und, und]
q14 [0, 0] [und, und, und, und]

Table 3: a-2, Mapping between the modes of the Local be-
havior automaton and the instances of the residuals.

modes [r11, r12, r13] [r21, r22, r23, r24]
q20 [und, und, und] [0, 0, 0, 0]
q21 [und, und, und] [1, 0, 0, 0]
q22 [und, und, und] [0, 0, 1, 0]
q23 [und, und, und] [1, 0, 1, 0]
q24 [und, und, und] [1, 0, 1, 0]

Table 4: b-1, Mapping between the modes of the Local be-
havior automaton and the instances of the residuals.

modes [rO11, rO12] [rO21, rO22, rO23]
q20 [und, und] [und, und, und]
q21 [und, und] [und, und, und]
q22 [und, und] [und, und, und]
q23 [und, und] [und, und, und]
q24 [und, und] [0, 0, 0]

Table 5: b-2, Mapping between the modes of the Local be-
havior automaton and the instances of the residuals.

 ( N1,  { } )  ( N2,  { } )

 It  is inclued in the diagnoser state: 
{ ( N1,  {opened circuit} )
 (N1,  { closed circuit} )
 (N1, {unknown} ) }

e
r11
01

e  rO22
01 e

 rO21
01

er13
01

er23
01e
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Figure 4: The Associated Local Diagnoser

the fault signatures exhibited at the continuous level into the
Mode Automaton that represents the discrete dynamics of the
system, so that DES diagnosability analysis can be performed
on the resulting Behavior Automaton and the correspond-
ing diagnoser. When the state of the system is ambiguous,
an analysis of the diagnose should allow to point at recon-
figuration actions that safely move the system into a mode
reducing ambiguity. To our knowledge there is no existing
work proposing a method to analyze the diagnosability of a
hybrid system. The method that we propose interprets the
continuous dynamics of the system in terms of events and
gives a procedure to merge this knowledge into the discrete
dynamics model. Our approach can be related to the work
by Lunze which uses Quantized Automata [Lunze, 2000a]
[Lunze, 2000b]. Lunze starts with a continuous system and
discretizes the continuous variable value domains. From this
discretization, he is able to produce a behavior automaton
that accounts for all the variable value switches. The be-
havior automaton that he produces is hence oriented towards
behavior prediction and simulation purposes and its seman-
tics are quite different from the behavior automaton that we
produce. In our case, we have pursued the goal to obtain
the same behavior automaton as used by the model-based
DES diagnosis community [Sampath et al., 1995] [Puig et
al., 2005] [Lamperti and Zanella, 2002], so that their results
can then be applied as so. For this purpose, the abstraction
of the continuous dynamics is performed from the contin-
uous subspaces that characterize the different modes of the
system and the switches undergone by the system state. The
subspaces are generated by the ARRs and the switches corre-



spond to value switches for their corresponding residuals. In
this framework, fault signatures are uniquely defined, which
is not the case when basing the abstraction on a state vari-
able value partionning of the state space as used by Lunze
[Lunze, 2000a]. This paper is in continuation with the work
done by the French Imalaia group [Cordier et al., 2004] and
the Bridge Task Group within the MONET network of Excel-
lence. It hence uses the knowledge and results obtained by
these two groups and establishes yet another bridge between
two model based communities, namely the continuous and
the DES model based communities. Future work will be de-
voted to the problem of using diagnosability assessment for
selecting the best reconfiguration action so that the system
is driven into a mode in which new symptoms are exhibited,
hence desambiguating the diagnosis. This problems goes be-
yond selecting and applying a discrete action. Indeed, some
physical constraints may require to planify a sequence actions
and the hybrid nature of the system may call for hybrid con-
trol.
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bet, and X. Olive. Diagnosability analysis based on com-
ponent supported analytical redundancy relations. Rap-
port LAAS N04080, To appear in IEEE Transactions on
Systems, Man and Cybernetics, Part A, 2004.

[Williams and Nayak, 1999] Brian C. Williams and P. Pan-
durang Nayak. A model-based approach to reactive self-
configuring systems. In Jack Minker, editor, Workshop on
Logic-Based Artificial Intelligence, Washington, DC, June
14–16, 1999, College Park, Maryland, 1999. Computer
Science Department, University of Maryland.


